Cargando…
Properties of the Vascular Networks in Malignant Tumors
This work presents an analysis for real and synthetic angiogenic networks using a tomography image that obtains a portrait of a vascular network. After the image conversion into a binary format it is possible to measure various network properties, which includes the average path length, the clusteri...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516584/ https://www.ncbi.nlm.nih.gov/pubmed/33285941 http://dx.doi.org/10.3390/e22020166 |
Sumario: | This work presents an analysis for real and synthetic angiogenic networks using a tomography image that obtains a portrait of a vascular network. After the image conversion into a binary format it is possible to measure various network properties, which includes the average path length, the clustering coefficient, the degree distribution and the fractal dimension. When comparing the observed properties with that produced by the Invasion Percolation algorithm (IPA), we observe that there exist differences between the properties obtained by the real and the synthetic networks produced by the IPA algorithm. Taking into account the former, a new algorithm which models the expansion of an angiogenic network through randomly heuristic rules is proposed. When comparing this new algorithm with the real networks it is observed that now both share some properties. Once creating synthetic networks, we prove the robustness of the network by subjecting the original angiogenic and the synthetic networks to the removal of the most connected nodes, and see to what extent the properties changed. Using this concept of robustness, in a very naive fashion it is possible to launch a hypothetical proposal for a therapeutic treatment based on the robustness of the network. |
---|