Cargando…
Mean Shift Cluster Recognition Method Implementation in the Nested Sampling Algorithm
Nested sampling is an efficient algorithm for the calculation of the Bayesian evidence and posterior parameter probability distributions. It is based on the step-by-step exploration of the parameter space by Monte Carlo sampling with a series of values sets called live points that evolve towards the...
Autores principales: | Trassinelli, Martino, Ciccodicola, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516612/ https://www.ncbi.nlm.nih.gov/pubmed/33285961 http://dx.doi.org/10.3390/e22020185 |
Ejemplares similares
-
Assessing Search and Unsupervised Clustering Algorithms in Nested Sampling
por: Maillard, Lune, et al.
Publicado: (2023) -
A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm
por: de Brito, Daniel M., et al.
Publicado: (2016) -
Algorithms for fuzzy clustering: methods in c-means clustering with applications
por: Miyamoto, Sadaaki, et al.
Publicado: (2008) -
Histological image segmentation using fast mean shift clustering method
por: Wu, Geming, et al.
Publicado: (2015) -
Meta-analysis of mean differences from randomized trials with nested clustering
por: Walwyn, Rebecca
Publicado: (2013)