Cargando…
Deep Residual Learning for Nonlinear Regression
Deep learning plays a key role in the recent developments of machine learning. This paper develops a deep residual neural network (ResNet) for the regression of nonlinear functions. Convolutional layers and pooling layers are replaced by fully connected layers in the residual block. To evaluate the...
Autores principales: | Chen, Dongwei, Hu, Fei, Nian, Guokui, Yang, Tiantian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516619/ https://www.ncbi.nlm.nih.gov/pubmed/33285968 http://dx.doi.org/10.3390/e22020193 |
Ejemplares similares
-
Densely Connected Neural Networks for Nonlinear Regression
por: Jiang, Chao, et al.
Publicado: (2022) -
Nonlinear regression
por: Seber, G. A. F. (George Arthur Frederick), 1938-
Publicado: (2003) -
Nonlinear Regression with R
por: Ritz, Christian, et al.
Publicado: (2009) -
Likelihood interval for nonlinear regression
por: Lee, Moon Hee, et al.
Publicado: (2023) -
Asymptotic theory of nonlinear regression
por: Ivanov, Alexander V
Publicado: (1997)