Cargando…
Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization
Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs. Its inception has allowed models to achieve state-of-the-art performance for challenging tasks such as link prediction, rating prediction, and node clustering. However, a fundamental flaw exists...
Autores principales: | Choong, Jun Jin, Liu, Xin, Murata, Tsuyoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516625/ https://www.ncbi.nlm.nih.gov/pubmed/33285972 http://dx.doi.org/10.3390/e22020197 |
Ejemplares similares
-
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Wei, Ruoqi, et al.
Publicado: (2021) -
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2019) -
Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs
por: Gunduz, Hakan
Publicado: (2022) -
Drug repositioning based on heterogeneous networks and variational graph autoencoders
por: Lei, Song, et al.
Publicado: (2022) -
Synthetic electronic health records generated with variational graph autoencoders
por: Nikolentzos, Giannis, et al.
Publicado: (2023)