Cargando…
Binary Communication with Gazeau–Klauder Coherent States
We investigate advantages and disadvantages of using Gazeau–Klauder coherent states for optical communication. In this short paper we show that using an alphabet consisting of coherent Gazeau–Klauder states related to a Kerr-type nonlinear oscillator instead of standard Perelomov coherent states res...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516629/ https://www.ncbi.nlm.nih.gov/pubmed/33285975 http://dx.doi.org/10.3390/e22020201 |
_version_ | 1783587045102321664 |
---|---|
author | Dajka, Jerzy Łuczka, Jerzy |
author_facet | Dajka, Jerzy Łuczka, Jerzy |
author_sort | Dajka, Jerzy |
collection | PubMed |
description | We investigate advantages and disadvantages of using Gazeau–Klauder coherent states for optical communication. In this short paper we show that using an alphabet consisting of coherent Gazeau–Klauder states related to a Kerr-type nonlinear oscillator instead of standard Perelomov coherent states results in lowering of the Helstrom bound for error probability in binary communication. We also discuss trace distance between Gazeau–Klauder coherent states and a standard coherent state as a quantifier of distinguishability of alphabets. |
format | Online Article Text |
id | pubmed-7516629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75166292020-11-09 Binary Communication with Gazeau–Klauder Coherent States Dajka, Jerzy Łuczka, Jerzy Entropy (Basel) Article We investigate advantages and disadvantages of using Gazeau–Klauder coherent states for optical communication. In this short paper we show that using an alphabet consisting of coherent Gazeau–Klauder states related to a Kerr-type nonlinear oscillator instead of standard Perelomov coherent states results in lowering of the Helstrom bound for error probability in binary communication. We also discuss trace distance between Gazeau–Klauder coherent states and a standard coherent state as a quantifier of distinguishability of alphabets. MDPI 2020-02-10 /pmc/articles/PMC7516629/ /pubmed/33285975 http://dx.doi.org/10.3390/e22020201 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dajka, Jerzy Łuczka, Jerzy Binary Communication with Gazeau–Klauder Coherent States |
title | Binary Communication with Gazeau–Klauder Coherent States |
title_full | Binary Communication with Gazeau–Klauder Coherent States |
title_fullStr | Binary Communication with Gazeau–Klauder Coherent States |
title_full_unstemmed | Binary Communication with Gazeau–Klauder Coherent States |
title_short | Binary Communication with Gazeau–Klauder Coherent States |
title_sort | binary communication with gazeau–klauder coherent states |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516629/ https://www.ncbi.nlm.nih.gov/pubmed/33285975 http://dx.doi.org/10.3390/e22020201 |
work_keys_str_mv | AT dajkajerzy binarycommunicationwithgazeauklaudercoherentstates AT łuczkajerzy binarycommunicationwithgazeauklaudercoherentstates |