Cargando…
Nonlinear Canonical Correlation Analysis:A Compressed Representation Approach
Canonical Correlation Analysis (CCA) is a linear representation learning method that seeks maximally correlated variables in multi-view data. Nonlinear CCA extends this notion to a broader family of transformations, which are more powerful in many real-world applications. Given the joint probability...
Autores principales: | Painsky, Amichai, Feder, Meir, Tishby, Naftali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516638/ https://www.ncbi.nlm.nih.gov/pubmed/33285982 http://dx.doi.org/10.3390/e22020208 |
Ejemplares similares
-
Robust Universal Inference
por: Painsky, Amichai, et al.
Publicado: (2021) -
The Representation of Prediction Error in Auditory Cortex
por: Rubin, Jonathan, et al.
Publicado: (2016) -
Surprise response as a probe for compressed memory states
por: Levi-Aharoni, Hadar, et al.
Publicado: (2020) -
A Case Report and Literature Analysis:A Supracondylar Femur Fracture in a Super-Obese Patient
por: Badghish, Emran M., et al.
Publicado: (2019) -
Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection
por: Adler, Afek Ilay, et al.
Publicado: (2022)