Cargando…
Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding
In this paper, we develop an unsupervised generative clustering framework that combines the variational information bottleneck and the Gaussian mixture model. Specifically, in our approach, we use the variational information bottleneck method and model the latent space as a mixture of Gaussians. We...
Autores principales: | Uğur, Yiğit, Arvanitakis, George, Zaidi, Abdellatif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516645/ https://www.ncbi.nlm.nih.gov/pubmed/33285988 http://dx.doi.org/10.3390/e22020213 |
Ejemplares similares
-
Research on a Segmentation Algorithm for the Tujia Brocade Images Based on Unsupervised Gaussian Mixture Clustering
por: He, Shuqi
Publicado: (2021) -
On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views
por: Zaidi, Abdellatif, et al.
Publicado: (2020) -
On the Difference between the Information Bottleneck and the Deep Information Bottleneck
por: Wieczorek, Aleksander, et al.
Publicado: (2020) -
Unsupervised assessment of microarray data quality using a Gaussian mixture model
por: Howard, Brian E, et al.
Publicado: (2009) -
GMAIR: Unsupervised Object Detection Based on Spatial Attention and Gaussian Mixture Model
por: Zhu, Weijin, et al.
Publicado: (2022)