Cargando…
Semi-Supervised Bidirectional Long Short-Term Memory and Conditional Random Fields Model for Named-Entity Recognition Using Embeddings from Language Models Representations
Increasingly, popular online museums have significantly changed the way people acquire cultural knowledge. These online museums have been generating abundant amounts of cultural relics data. In recent years, researchers have used deep learning models that can automatically extract complex features a...
Autores principales: | Zhang, Min, Geng, Guohua, Chen, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516692/ https://www.ncbi.nlm.nih.gov/pubmed/33286026 http://dx.doi.org/10.3390/e22020252 |
Ejemplares similares
-
A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation
por: Stojanov, Riste, et al.
Publicado: (2021) -
Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization
por: Taillé, Bruno, et al.
Publicado: (2020) -
Unsupervised cross-lingual model transfer for named entity recognition with contextualized word representations
por: Yan, Huijiong, et al.
Publicado: (2021) -
Combined SVM-CRFs for Biological Named Entity Recognition with Maximal Bidirectional Squeezing
por: Zhu, Fei, et al.
Publicado: (2012) -
Deep learning with language models improves named entity recognition for PharmaCoNER
por: Sun, Cong, et al.
Publicado: (2021)