Cargando…
Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design
Optimal experimental design (OED) is of great significance in efficient Bayesian inversion. A popular choice of OED methods is based on maximizing the expected information gain (EIG), where expensive likelihood functions are typically involved. To reduce the computational cost, in this work, a novel...
Autores principales: | Xu, Zhihang, Liao, Qifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516703/ https://www.ncbi.nlm.nih.gov/pubmed/33286031 http://dx.doi.org/10.3390/e22020258 |
Ejemplares similares
-
Global Optimization Employing Gaussian Process-Based Bayesian Surrogates†
por: Preuss, Roland, et al.
Publicado: (2018) -
Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction
por: Kopsiaftis, George, et al.
Publicado: (2019) -
Bayesian(3) Active Learning for the Gaussian Process Emulator Using Information Theory
por: Oladyshkin, Sergey, et al.
Publicado: (2020) -
GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation
por: Tankhilevich, Evgeny, et al.
Publicado: (2020) -
Bayesian reconstruction of magnetic resonance images using Gaussian processes
por: Xu, Yihong, et al.
Publicado: (2023)