Cargando…
Model Selection in a Composite Likelihood Framework Based on Density Power Divergence
This paper presents a model selection criterion in a composite likelihood framework based on density power divergence measures and in the composite minimum density power divergence estimators, which depends on an tuning parameter [Formula: see text]. After introducing such a criterion, some asymptot...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516723/ https://www.ncbi.nlm.nih.gov/pubmed/33286044 http://dx.doi.org/10.3390/e22030270 |
Sumario: | This paper presents a model selection criterion in a composite likelihood framework based on density power divergence measures and in the composite minimum density power divergence estimators, which depends on an tuning parameter [Formula: see text]. After introducing such a criterion, some asymptotic properties are established. We present a simulation study and two numerical examples in order to point out the robustness properties of the introduced model selection criterion. |
---|