Cargando…

Model Selection in a Composite Likelihood Framework Based on Density Power Divergence

This paper presents a model selection criterion in a composite likelihood framework based on density power divergence measures and in the composite minimum density power divergence estimators, which depends on an tuning parameter [Formula: see text]. After introducing such a criterion, some asymptot...

Descripción completa

Detalles Bibliográficos
Autores principales: Castilla, Elena, Martín, Nirian, Pardo, Leandro, Zografos, Konstantinos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516723/
https://www.ncbi.nlm.nih.gov/pubmed/33286044
http://dx.doi.org/10.3390/e22030270
Descripción
Sumario:This paper presents a model selection criterion in a composite likelihood framework based on density power divergence measures and in the composite minimum density power divergence estimators, which depends on an tuning parameter [Formula: see text]. After introducing such a criterion, some asymptotic properties are established. We present a simulation study and two numerical examples in order to point out the robustness properties of the introduced model selection criterion.