Cargando…
A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy
Feature extraction is one of the challenging problems in fault diagnosis, and it has a direct bearing on the accuracy of fault diagnosis. Therefore, in this paper, a new method based on ensemble empirical mode decomposition (EEMD), wavelet semi-soft threshold (WSST) signal reconstruction, and multi-...
Autores principales: | Ge, Jianghua, Niu, Tianyu, Xu, Di, Yin, Guibin, Wang, Yaping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516750/ https://www.ncbi.nlm.nih.gov/pubmed/33286065 http://dx.doi.org/10.3390/e22030290 |
Ejemplares similares
-
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
por: Lee, Dong-Han, et al.
Publicado: (2017) -
Fault Diagnosis for Analog Circuits by Using EEMD, Relative Entropy, and ELM
por: Xiong, Jian, et al.
Publicado: (2016) -
A Feature Extraction Method Using Improved Multi-Scale Entropy for Rolling Bearing Fault Diagnosis
por: Ju, Bin, et al.
Publicado: (2018) -
Fault Recognition of Rolling Bearings Based on Parameter Optimized Multi-Scale Permutation Entropy and Gath-Geva
por: Wang, Haiming, et al.
Publicado: (2021) -
Composite Multivariate Multi-Scale Permutation Entropy and Laplacian Score Based Fault Diagnosis of Rolling Bearing
por: Ying, Wanming, et al.
Publicado: (2022)