Cargando…
Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph
Multidimensional datapoint clouds representing large datasets are frequently characterized by non-trivial low-dimensional geometry and topology which can be recovered by unsupervised machine learning approaches, in particular, by principal graphs. Principal graphs approximate the multivariate data b...
Autores principales: | Albergante, Luca, Mirkes, Evgeny, Bac, Jonathan, Chen, Huidong, Martin, Alexis, Faure, Louis, Barillot, Emmanuel, Pinello, Luca, Gorban, Alexander, Zinovyev, Andrei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516753/ https://www.ncbi.nlm.nih.gov/pubmed/33286070 http://dx.doi.org/10.3390/e22030296 |
Ejemplares similares
-
Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation
por: Bac, Jonathan, et al.
Publicado: (2021) -
Trajectories, bifurcations, and pseudo-time in large clinical datasets: applications to myocardial infarction and diabetes data
por: Golovenkin, Sergey E, et al.
Publicado: (2020) -
Domain Adaptation Principal Component Analysis: Base Linear Method for Learning with Out-of-Distribution Data
por: Mirkes, Evgeny M., et al.
Publicado: (2022) -
Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
por: Chen, Huidong, et al.
Publicado: (2019) -
Scalable robust graph and feature extraction for arbitrary vessel networks in large volumetric datasets
por: Drees, Dominik, et al.
Publicado: (2021)