Cargando…
Relative Distribution Entropy Loss Function in CNN Image Retrieval
Convolutional neural networks (CNN) is the most mainstream solution in the field of image retrieval. Deep metric learning is introduced into the field of image retrieval, focusing on the construction of pair-based loss function. However, most pair-based loss functions of metric learning merely take...
Autores principales: | Liu, Pingping, Shi, Lida, Miao, Zhuang, Jin, Baixin, Zhou, Qiuzhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516778/ https://www.ncbi.nlm.nih.gov/pubmed/33286094 http://dx.doi.org/10.3390/e22030321 |
Ejemplares similares
-
Fusing Feature Distribution Entropy with R-MAC Features in Image Retrieval
por: Liu, Pingping, et al.
Publicado: (2019) -
Diabetic Retinal Grading Using Attention-Based Bilinear Convolutional Neural Network and Complement Cross Entropy
por: Liu, Pingping, et al.
Publicado: (2021) -
Global Optimal Structured Embedding Learning for Remote Sensing Image Retrieval
por: Liu, Pingping, et al.
Publicado: (2020) -
Optic Disc Segmentation Using Attention-Based U-Net and the Improved Cross-Entropy Convolutional Neural Network
por: Jin, Baixin, et al.
Publicado: (2020) -
Composed query image retrieval based on triangle area triple loss function and combining CNN with transformer
por: Zhang, Zhiwei, et al.
Publicado: (2022)