Cargando…

An Entropy-Based Approach to Portfolio Optimization

This paper presents an improved method of applying entropy as a risk in portfolio optimization. A new family of portfolio optimization problems called the return-entropy portfolio optimization (REPO) is introduced that simplifies the computation of portfolio entropy using a combinatorial approach. R...

Descripción completa

Detalles Bibliográficos
Autores principales: Mercurio, Peter Joseph, Wu, Yuehua, Xie, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516790/
https://www.ncbi.nlm.nih.gov/pubmed/33286106
http://dx.doi.org/10.3390/e22030332
Descripción
Sumario:This paper presents an improved method of applying entropy as a risk in portfolio optimization. A new family of portfolio optimization problems called the return-entropy portfolio optimization (REPO) is introduced that simplifies the computation of portfolio entropy using a combinatorial approach. REPO addresses five main practical concerns with the mean-variance portfolio optimization (MVPO). Pioneered by Harry Markowitz, MVPO revolutionized the financial industry as the first formal mathematical approach to risk-averse investing. REPO uses a mean-entropy objective function instead of the mean-variance objective function used in MVPO. REPO also simplifies the portfolio entropy calculation by utilizing combinatorial generating functions in the optimization objective function. REPO and MVPO were compared by emulating competing portfolios over historical data and REPO significantly outperformed MVPO in a strong majority of cases.