Cargando…
Semantic and Generalized Entropy Loss Functions for Semi-Supervised Deep Learning
The increasing size of modern datasets combined with the difficulty of obtaining real label information (e.g., class) has made semi-supervised learning a problem of considerable practical importance in modern data analysis. Semi-supervised learning is supervised learning with additional information...
Autores principales: | Gajowniczek, Krzysztof, Liang, Yitao, Friedman, Tal, Ząbkowski, Tomasz, Van den Broeck, Guy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516792/ https://www.ncbi.nlm.nih.gov/pubmed/33286108 http://dx.doi.org/10.3390/e22030334 |
Ejemplares similares
-
Simulation Study on the Application of the Generalized Entropy Concept in Artificial Neural Networks
por: Gajowniczek, Krzysztof, et al.
Publicado: (2018) -
Electricity forecasting on the individual household level enhanced based on activity patterns
por: Gajowniczek, Krzysztof, et al.
Publicado: (2017) -
Reducing False Arrhythmia Alarms Using Different Methods of Probability and Class Assignment in Random Forest Learning Methods
por: Gajowniczek, Krzysztof, et al.
Publicado: (2019) -
Whole Time Series Data Streams Clustering: Dynamic Profiling of the Electricity Consumption
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020) -
Weighted Random Forests to Improve Arrhythmia Classification
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020)