Cargando…
Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy?
MaxEnt is a popular maximum entropy-based algorithm originally developed for modelling species distribution, but increasingly used for land-cover classification. In this article, we used MaxEnt as a single-class land-cover classification and explored if recommended procedures for generating high-qua...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516803/ https://www.ncbi.nlm.nih.gov/pubmed/33286116 http://dx.doi.org/10.3390/e22030342 |
_version_ | 1783587084908363776 |
---|---|
author | Morales, Narkis S. Fernández, Ignacio C. |
author_facet | Morales, Narkis S. Fernández, Ignacio C. |
author_sort | Morales, Narkis S. |
collection | PubMed |
description | MaxEnt is a popular maximum entropy-based algorithm originally developed for modelling species distribution, but increasingly used for land-cover classification. In this article, we used MaxEnt as a single-class land-cover classification and explored if recommended procedures for generating high-quality species distribution models also apply for generating high-accuracy land-cover classification. We used remote sensing imagery and randomly selected ground-true points for four types of land covers (built, grass, deciduous, evergreen) to generate 1980 classification maps using MaxEnt. We calculated different accuracy discrimination and quality model metrics to determine if these metrics were suitable proxies for estimating the accuracy of land-cover classification outcomes. Correlation analysis between model quality metrics showed consistent patterns for the relationships between metrics, but not for all land-covers. Relationship between model quality metrics and land-cover classification accuracy were land-cover-dependent. While for built cover there was no consistent patterns of correlations for any quality metrics; for grass, evergreen and deciduous, there was a consistent association between quality metrics and classification accuracy. We recommend evaluating the accuracy of land-cover classification results by using proper discrimination accuracy coefficients (e.g., Kappa, Overall Accuracy), and not placing all the confidence in model’s quality metrics as a reliable indicator of land-cover classification results. |
format | Online Article Text |
id | pubmed-7516803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75168032020-11-09 Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy? Morales, Narkis S. Fernández, Ignacio C. Entropy (Basel) Article MaxEnt is a popular maximum entropy-based algorithm originally developed for modelling species distribution, but increasingly used for land-cover classification. In this article, we used MaxEnt as a single-class land-cover classification and explored if recommended procedures for generating high-quality species distribution models also apply for generating high-accuracy land-cover classification. We used remote sensing imagery and randomly selected ground-true points for four types of land covers (built, grass, deciduous, evergreen) to generate 1980 classification maps using MaxEnt. We calculated different accuracy discrimination and quality model metrics to determine if these metrics were suitable proxies for estimating the accuracy of land-cover classification outcomes. Correlation analysis between model quality metrics showed consistent patterns for the relationships between metrics, but not for all land-covers. Relationship between model quality metrics and land-cover classification accuracy were land-cover-dependent. While for built cover there was no consistent patterns of correlations for any quality metrics; for grass, evergreen and deciduous, there was a consistent association between quality metrics and classification accuracy. We recommend evaluating the accuracy of land-cover classification results by using proper discrimination accuracy coefficients (e.g., Kappa, Overall Accuracy), and not placing all the confidence in model’s quality metrics as a reliable indicator of land-cover classification results. MDPI 2020-03-17 /pmc/articles/PMC7516803/ /pubmed/33286116 http://dx.doi.org/10.3390/e22030342 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Morales, Narkis S. Fernández, Ignacio C. Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy? |
title | Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy? |
title_full | Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy? |
title_fullStr | Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy? |
title_full_unstemmed | Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy? |
title_short | Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy? |
title_sort | land-cover classification using maxent: can we trust in model quality metrics for estimating classification accuracy? |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516803/ https://www.ncbi.nlm.nih.gov/pubmed/33286116 http://dx.doi.org/10.3390/e22030342 |
work_keys_str_mv | AT moralesnarkiss landcoverclassificationusingmaxentcanwetrustinmodelqualitymetricsforestimatingclassificationaccuracy AT fernandezignacioc landcoverclassificationusingmaxentcanwetrustinmodelqualitymetricsforestimatingclassificationaccuracy |