Cargando…
On Geometry of Information Flow for Causal Inference
Causal inference is perhaps one of the most fundamental concepts in science, beginning originally from the works of some of the ancient philosophers, through today, but also weaved strongly in current work from statisticians, machine learning experts, and scientists from many other fields. This pape...
Autores principales: | Surasinghe, Sudam, Bollt, Erik M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516872/ https://www.ncbi.nlm.nih.gov/pubmed/33286168 http://dx.doi.org/10.3390/e22040396 |
Ejemplares similares
-
Causal Geometry
por: Chvykov, Pavel, et al.
Publicado: (2020) -
Causality Analysis with Information Geometry: A Comparison
por: Choong, Heng Jie, et al.
Publicado: (2023) -
Causal Inference for Heterogeneous Data and Information Theory
por: Hlaváčková-Schindler, Kateřina
Publicado: (2023) -
The Bayesian Inference of Pareto Models Based on Information Geometry
por: Sun, Fupeng, et al.
Publicado: (2020) -
ITGH: Information-Theoretic Granger Causal Inference on Heterogeneous Data
por: Behzadi, Sahar, et al.
Publicado: (2020)