Cargando…
The Fisher–Rao Distance between Multivariate Normal Distributions: Special Cases, Bounds and Applications
The Fisher–Rao distance is a measure of dissimilarity between probability distributions, which, under certain regularity conditions of the statistical model, is up to a scaling factor the unique Riemannian metric invariant under Markov morphisms. It is related to the Shannon entropy and has been use...
Autores principales: | Pinele, Julianna, Strapasson, João E., Costa, Sueli I. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516881/ https://www.ncbi.nlm.nih.gov/pubmed/33286178 http://dx.doi.org/10.3390/e22040404 |
Ejemplares similares
-
A Simple Approximation Method for the Fisher–Rao Distance between Multivariate Normal Distributions
por: Nielsen, Frank
Publicado: (2023) -
Rao-Fisher information geometry and dynamics of the event-universe views distributions
por: Shor, Oded, et al.
Publicado: (2023) -
C R Rao and Mahalanobis’ distance
por: Chaudhuri, Probal
Publicado: (2020) -
Cramér-Rao Bound Optimized Subspace Reconstruction in Quantitative MRI
por: Mao, Andrew, et al.
Publicado: (2023) -
The Cramér–Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations
por: Wang, Zhiguo, et al.
Publicado: (2018)