Cargando…
Fifteen Years of Gene Set Analysis for High-Throughput Genomic Data: A Review of Statistical Approaches and Future Challenges
Over the last decade, gene set analysis has become the first choice for gaining insights into underlying complex biology of diseases through gene expression and gene association studies. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results...
Autores principales: | Das, Samarendra, McClain, Craig J., Rai, Shesh N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516904/ https://www.ncbi.nlm.nih.gov/pubmed/33286201 http://dx.doi.org/10.3390/e22040427 |
Ejemplares similares
-
Statistical Approach for Biologically Relevant Gene Selection from High-Throughput Gene Expression Data
por: Das, Samarendra, et al.
Publicado: (2020) -
Statistical Approach of Gene Set Analysis with Quantitative Trait Loci for Crop Gene Expression Studies
por: Das, Samarendra, et al.
Publicado: (2021) -
Differential Expression Analysis of Single-Cell RNA-Seq Data: Current Statistical Approaches and Outstanding Challenges
por: Das, Samarendra, et al.
Publicado: (2022) -
Statistical Approach for Gene Set Analysis with Trait Specific Quantitative Trait Loci
por: Das, Samarendra, et al.
Publicado: (2018) -
Statistical methods for analysis of single-cell RNA-sequencing data
por: Das, Samarendra, et al.
Publicado: (2021)