Cargando…
Towards a Unified Theory of Learning and Information
In this paper, we introduce the notion of “learning capacity” for algorithms that learn from data, which is analogous to the Shannon channel capacity for communication systems. We show how “learning capacity” bridges the gap between statistical learning theory and information theory, and we will use...
Autor principal: | Alabdulmohsin, Ibrahim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516920/ https://www.ncbi.nlm.nih.gov/pubmed/33286212 http://dx.doi.org/10.3390/e22040438 |
Ejemplares similares
-
Summability calculus: a comprehensive theory of fractional finite sums
por: Alabdulmohsin, Ibrahim M
Publicado: (2018) -
Brain recovery – towards an unified theory
por: Mureşanu, Dafin F
Publicado: (2010) -
Emergence as the conversion of information: a unifying theory
por: Varley, Thomas F., et al.
Publicado: (2022) -
Towards a unifying theory of linguistic meaning
por: Mondal, Prakash
Publicado: (2023) -
Toward a unified theory of voice production and perception
por: Kreiman, Jody, et al.
Publicado: (2014)