Cargando…

Symbolic Analysis Applied to the Specification of Spatial Trends and Spatial Dependence

This article provides symbolic analysis tools for specifying spatial econometric models. It firstly considers testing spatial dependence in the presence of potential leading deterministic spatial components (similar to time-series tests for unit roots in the presence of temporal drift and/or time-tr...

Descripción completa

Detalles Bibliográficos
Autor principal: Makeienko, Maryna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516950/
https://www.ncbi.nlm.nih.gov/pubmed/33286241
http://dx.doi.org/10.3390/e22040466
Descripción
Sumario:This article provides symbolic analysis tools for specifying spatial econometric models. It firstly considers testing spatial dependence in the presence of potential leading deterministic spatial components (similar to time-series tests for unit roots in the presence of temporal drift and/or time-trend) and secondly considers how to econometrically model spatial economic relations that might contain unobserved spatial structure of unknown form. Hypothesis testing is conducted with a symbolic-entropy based non-parametric statistical procedure, recently proposed by Garcia-Cordoba, Matilla-Garcia, and Ruiz (2019), which does not rely on prior weight matrices assumptions. It is shown that the use of geographically restricted semiparametric spatial models is a promising modeling strategy for cross-sectional datasets that are compatible with some types of spatial dependence. The results state that models that merely incorporate space coordinates might be sufficient to capture space dependence. Hedonic models for Baltimore, Boston, and Toledo housing prices datasets are revisited, studied (with the new proposed procedures), and compared with standard spatial econometric methodologies.