Cargando…
Higher-Order Cumulants Drive Neuronal Activity Patterns, Inducing UP-DOWN States in Neural Populations
A major challenge in neuroscience is to understand the role of the higher-order correlations structure of neuronal populations. The dichotomized Gaussian model (DG) generates spike trains by means of thresholding a multivariate Gaussian random variable. The DG inputs are Gaussian distributed, and th...
Autores principales: | Baravalle, Roman, Montani, Fernando |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516951/ https://www.ncbi.nlm.nih.gov/pubmed/33286251 http://dx.doi.org/10.3390/e22040477 |
Ejemplares similares
-
Causal Shannon–Fisher Characterization of Motor/Imagery Movements in EEG
por: Baravalle, Román, et al.
Publicado: (2018) -
Generalisation of the Cumulants of Flow Amplitudes to the higher orders
por: Mordasini, Cindy
Publicado: (2021) -
The Effect of Inhibitory Neuron on the Evolution Model of Higher-Order Coupling Neural Oscillator Population
por: Qi, Yi, et al.
Publicado: (2014) -
Automatic Modulation Recognition Based on the Optimized Linear Combination of Higher-Order Cumulants
por: Hussain, Asad, et al.
Publicado: (2022) -
Ambiguity drives higher-order Pavlovian learning
por: Zbozinek, Tomislav D., et al.
Publicado: (2022)