Cargando…
Cross-Domain Recommendation Based on Sentiment Analysis and Latent Feature Mapping
Cross-domain recommendation is a promising solution in recommendation systems by using relatively rich information from the source domain to improve the recommendation accuracy of the target domain. Most of the existing methods consider the rating information of users in different domains, the label...
Autores principales: | Wang, Yongpeng, Yu, Hong, Wang, Guoyin, Xie, Yongfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516959/ https://www.ncbi.nlm.nih.gov/pubmed/33286247 http://dx.doi.org/10.3390/e22040473 |
Ejemplares similares
-
Cross-Domain Sentiment Analysis Based on Feature Projection and Multi-Source Attention in IoT
por: Kong, Yeqiu, et al.
Publicado: (2023) -
Analysis of Sentiment and Personalised Recommendation in Musical Performance
por: Wang, Dan
Publicado: (2022) -
A Hybrid Recommender System Based on Autoencoder and Latent Feature Analysis
por: Guo, Shangzhi, et al.
Publicado: (2023) -
An Approach to Integrating Sentiment Analysis into Recommender Systems
por: Dang, Cach N., et al.
Publicado: (2021) -
A BERT-Based Aspect-Level Sentiment Analysis Algorithm for Cross-Domain Text
por: Liu, Ning, et al.
Publicado: (2022)