Cargando…
Mechanical Fault Diagnosis of a High Voltage Circuit Breaker Based on High-Efficiency Time-Domain Feature Extraction with Entropy Features
The fault samples of high voltage circuit breakers are few, the vibration signals are complex, the existing research methods cannot extract the effective information in the features, and it is easy to overfit, slow training, and other problems. To improve the efficiency of feature extraction of a ci...
Autores principales: | Qi, Jiajin, Gao, Xu, Huang, Nantian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516961/ https://www.ncbi.nlm.nih.gov/pubmed/33286252 http://dx.doi.org/10.3390/e22040478 |
Ejemplares similares
-
A Novel Mechanical Fault Feature Selection and Diagnosis Approach for High-Voltage Circuit Breakers Using Features Extracted without Signal Processing
por: Lin, Lin, et al.
Publicado: (2019) -
Application of Multiscale Entropy in Mechanical Fault Diagnosis of High Voltage Circuit Breaker
por: Dou, Longjiang, et al.
Publicado: (2018) -
Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier
por: Huang, Nantian, et al.
Publicado: (2016) -
Mechanical Fault Diagnosis of High Voltage Circuit Breakers Utilizing EWT-Improved Time Frequency Entropy and Optimal GRNN Classifier
por: Li, Bing, et al.
Publicado: (2018) -
Investigation on the fault monitoring of high-voltage circuit breaker using improved deep learning
por: Chen, Hao, et al.
Publicado: (2023)