Cargando…

Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments

The design and optimization of new-generation solid-state quantum hardware absolutely requires reliable dissipation versus decoherence models. Depending on the device operational condition, the latter may range from Markov-type schemes (both phenomenological- and microscopic- like) to quantum-kineti...

Descripción completa

Detalles Bibliográficos
Autores principales: Iotti, Rita Claudia, Rossi, Fausto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516970/
https://www.ncbi.nlm.nih.gov/pubmed/33286265
http://dx.doi.org/10.3390/e22040489
_version_ 1783587120859840512
author Iotti, Rita Claudia
Rossi, Fausto
author_facet Iotti, Rita Claudia
Rossi, Fausto
author_sort Iotti, Rita Claudia
collection PubMed
description The design and optimization of new-generation solid-state quantum hardware absolutely requires reliable dissipation versus decoherence models. Depending on the device operational condition, the latter may range from Markov-type schemes (both phenomenological- and microscopic- like) to quantum-kinetic approaches. The primary goal of this paper is to review in a cohesive way virtues versus limitations of the most popular approaches, focussing on a few critical issues recently pointed out (see, e.g., Phys. Rev. B 90, 125140 (2014); Eur. Phys. J. B 90, 250 (2017)) and linking them within a common framework. By means of properly designed simulated experiments of a prototypical quantum-dot nanostructure (described via a two-level electronic system coupled to a phonon bath), we shall show that both conventional (i.e., non-Lindblad) Markov models and density-matrix-based non-Markov approaches (i.e., quantum-kinetic treatments) may lead to significant positivity violations. While for the former case the problem is easily avoidable by choosing genuine Lindblad-type dissipation models, for the latter, a general strategy is still missing.
format Online
Article
Text
id pubmed-7516970
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75169702020-11-09 Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments Iotti, Rita Claudia Rossi, Fausto Entropy (Basel) Article The design and optimization of new-generation solid-state quantum hardware absolutely requires reliable dissipation versus decoherence models. Depending on the device operational condition, the latter may range from Markov-type schemes (both phenomenological- and microscopic- like) to quantum-kinetic approaches. The primary goal of this paper is to review in a cohesive way virtues versus limitations of the most popular approaches, focussing on a few critical issues recently pointed out (see, e.g., Phys. Rev. B 90, 125140 (2014); Eur. Phys. J. B 90, 250 (2017)) and linking them within a common framework. By means of properly designed simulated experiments of a prototypical quantum-dot nanostructure (described via a two-level electronic system coupled to a phonon bath), we shall show that both conventional (i.e., non-Lindblad) Markov models and density-matrix-based non-Markov approaches (i.e., quantum-kinetic treatments) may lead to significant positivity violations. While for the former case the problem is easily avoidable by choosing genuine Lindblad-type dissipation models, for the latter, a general strategy is still missing. MDPI 2020-04-24 /pmc/articles/PMC7516970/ /pubmed/33286265 http://dx.doi.org/10.3390/e22040489 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Iotti, Rita Claudia
Rossi, Fausto
Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments
title Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments
title_full Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments
title_fullStr Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments
title_full_unstemmed Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments
title_short Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments
title_sort energy dissipation and decoherence in solid-state quantum devices: markovian versus non-markovian treatments
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516970/
https://www.ncbi.nlm.nih.gov/pubmed/33286265
http://dx.doi.org/10.3390/e22040489
work_keys_str_mv AT iottiritaclaudia energydissipationanddecoherenceinsolidstatequantumdevicesmarkovianversusnonmarkoviantreatments
AT rossifausto energydissipationanddecoherenceinsolidstatequantumdevicesmarkovianversusnonmarkoviantreatments