Cargando…
Limitations to Estimating Mutual Information in Large Neural Populations
Information theory provides a powerful framework to analyse the representation of sensory stimuli in neural population activity. However, estimating the quantities involved such as entropy and mutual information from finite samples is notoriously hard and any direct estimate is known to be heavily b...
Autores principales: | Mölter, Jan, Goodhill, Geoffrey J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516973/ https://www.ncbi.nlm.nih.gov/pubmed/33286264 http://dx.doi.org/10.3390/e22040490 |
Ejemplares similares
-
Detecting neural assemblies in calcium imaging data
por: Mölter, Jan, et al.
Publicado: (2018) -
Correction to: Detecting neural assemblies in calcium imaging data
por: Mölter, Jan, et al.
Publicado: (2019) -
Estimating the Mutual Information between Two Discrete, Asymmetric Variables with Limited Samples
por: Hernández, Damián G., et al.
Publicado: (2019) -
Scaling of sensory information in large neural populations shows signatures of information-limiting correlations
por: Kafashan, MohammadMehdi, et al.
Publicado: (2021) -
Spontaneous and evoked activity patterns diverge over development
por: Avitan, Lilach, et al.
Publicado: (2021)