Cargando…
Robust Change Point Test for General Integer-Valued Time Series Models Based on Density Power Divergence
In this study, we consider the problem of testing for a parameter change in general integer-valued time series models whose conditional distribution belongs to the one-parameter exponential family when the data are contaminated by outliers. In particular, we use a robust change point test based on d...
Autores principales: | Kim, Byungsoo, Lee, Sangyeol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516976/ https://www.ncbi.nlm.nih.gov/pubmed/33286266 http://dx.doi.org/10.3390/e22040493 |
Ejemplares similares
-
Monitoring Parameter Change for Time Series Models of Counts Based on Minimum Density Power Divergence Estimator
por: Lee, Sangyeol, et al.
Publicado: (2020) -
Robust Estimation for Bivariate Poisson INGARCH Models
por: Kim, Byungsoo, et al.
Publicado: (2021) -
Change Point Test for the Conditional Mean of Time Series of Counts Based on Support Vector Regression
por: Lee, Sangyeol, et al.
Publicado: (2021) -
Hybrid CUSUM Change Point Test for Time Series with Time-Varying Volatilities Based on Support Vector Regression
por: Lee, Sangyeol, et al.
Publicado: (2020) -
Forecasting and change point test for nonlinear heteroscedastic time series based on support vector regression
por: Wang, HsinKai, et al.
Publicado: (2022)