Cargando…
Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks
The appropriate utilization of entropy generation may provoke dipping losses in the available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation, chemical reaction, and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516979/ https://www.ncbi.nlm.nih.gov/pubmed/33286268 http://dx.doi.org/10.3390/e22050495 |
_version_ | 1783587123084918784 |
---|---|
author | Khan, Nargis Riaz, Iram Hashmi, Muhammad Sadiq Musmar, Saed A. Khan, Sami Ullah Abdelmalek, Zahra Tlili, Iskander |
author_facet | Khan, Nargis Riaz, Iram Hashmi, Muhammad Sadiq Musmar, Saed A. Khan, Sami Ullah Abdelmalek, Zahra Tlili, Iskander |
author_sort | Khan, Nargis |
collection | PubMed |
description | The appropriate utilization of entropy generation may provoke dipping losses in the available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation, chemical reaction, and heat absorption/generation features have been mathematically modeled and simulated via interaction of slip boundary conditions. Shooting method has been employed to numerically solve dimensionless form of the governing equations, including expressions referring to entropy generation. The impacts of the physical parameters on fluid velocity components, temperature and concentration profiles, and entropy generation number are presented. Simulation results revealed that axial component of velocity decreases with variation of Casson fluid parameter. A declining variation in Bejan number was noticed with increment of Casson fluid constant. Moreover, a progressive variation in Bejan number resulted due to the impact of Prandtl number and stretching ratio constant. |
format | Online Article Text |
id | pubmed-7516979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75169792020-11-09 Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks Khan, Nargis Riaz, Iram Hashmi, Muhammad Sadiq Musmar, Saed A. Khan, Sami Ullah Abdelmalek, Zahra Tlili, Iskander Entropy (Basel) Article The appropriate utilization of entropy generation may provoke dipping losses in the available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation, chemical reaction, and heat absorption/generation features have been mathematically modeled and simulated via interaction of slip boundary conditions. Shooting method has been employed to numerically solve dimensionless form of the governing equations, including expressions referring to entropy generation. The impacts of the physical parameters on fluid velocity components, temperature and concentration profiles, and entropy generation number are presented. Simulation results revealed that axial component of velocity decreases with variation of Casson fluid parameter. A declining variation in Bejan number was noticed with increment of Casson fluid constant. Moreover, a progressive variation in Bejan number resulted due to the impact of Prandtl number and stretching ratio constant. MDPI 2020-04-25 /pmc/articles/PMC7516979/ /pubmed/33286268 http://dx.doi.org/10.3390/e22050495 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khan, Nargis Riaz, Iram Hashmi, Muhammad Sadiq Musmar, Saed A. Khan, Sami Ullah Abdelmalek, Zahra Tlili, Iskander Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks |
title | Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks |
title_full | Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks |
title_fullStr | Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks |
title_full_unstemmed | Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks |
title_short | Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks |
title_sort | aspects of chemical entropy generation in flow of casson nanofluid between radiative stretching disks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516979/ https://www.ncbi.nlm.nih.gov/pubmed/33286268 http://dx.doi.org/10.3390/e22050495 |
work_keys_str_mv | AT khannargis aspectsofchemicalentropygenerationinflowofcassonnanofluidbetweenradiativestretchingdisks AT riaziram aspectsofchemicalentropygenerationinflowofcassonnanofluidbetweenradiativestretchingdisks AT hashmimuhammadsadiq aspectsofchemicalentropygenerationinflowofcassonnanofluidbetweenradiativestretchingdisks AT musmarsaeda aspectsofchemicalentropygenerationinflowofcassonnanofluidbetweenradiativestretchingdisks AT khansamiullah aspectsofchemicalentropygenerationinflowofcassonnanofluidbetweenradiativestretchingdisks AT abdelmalekzahra aspectsofchemicalentropygenerationinflowofcassonnanofluidbetweenradiativestretchingdisks AT tliliiskander aspectsofchemicalentropygenerationinflowofcassonnanofluidbetweenradiativestretchingdisks |