Cargando…
Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics
In this paper, we describe and exploit a geometric framework for Gibbs probability densities and the associated concepts in statistical mechanics, which unifies several earlier works on the subject, including Souriau’s symplectic model of statistical mechanics, its polysymplectic extension, Koszul m...
Autores principales: | Barbaresco, Frédéric, Gay-Balmaz, François |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516986/ https://www.ncbi.nlm.nih.gov/pubmed/33286271 http://dx.doi.org/10.3390/e22050498 |
Ejemplares similares
-
Higher Order Geometric Theory of Information and Heat Based on Poly-Symplectic Geometry of Souriau Lie Groups Thermodynamics and Their Contextures: The Bedrock for Lie Group Machine Learning
por: Barbaresco, Frédéric
Publicado: (2018) -
Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups Thermodynamics & Koszul-Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant Function in Coadjoint Representation
por: Barbaresco, Frédéric
Publicado: (2020) -
An alternative approach to Lie groups and geometric structures
por: Ortacgil, Ercument H
Publicado: (2018) -
Lie groups and geometric aspects of isometric actions
por: Alexandrino, Marcos M, et al.
Publicado: (2015) -
Lie groups and geometric aspects of isometric actions /
por: Alexandrino, Marcos M.
Publicado: (2015)