Cargando…

Hausdorff Dimension and Topological Entropies of a Solenoid

The purpose of this paper is to elucidate the interrelations between three essentially different concepts: solenoids, topological entropy, and Hausdorff dimension. For this purpose, we describe the dynamics of a solenoid by topological entropy-like quantities and investigate the relations between th...

Descripción completa

Detalles Bibliográficos
Autores principales: Biś, Andrzej, Namiecińska, Agnieszka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516996/
https://www.ncbi.nlm.nih.gov/pubmed/33286278
http://dx.doi.org/10.3390/e22050506
_version_ 1783587127121936384
author Biś, Andrzej
Namiecińska, Agnieszka
author_facet Biś, Andrzej
Namiecińska, Agnieszka
author_sort Biś, Andrzej
collection PubMed
description The purpose of this paper is to elucidate the interrelations between three essentially different concepts: solenoids, topological entropy, and Hausdorff dimension. For this purpose, we describe the dynamics of a solenoid by topological entropy-like quantities and investigate the relations between them. For L-Lipschitz solenoids and locally [Formula: see text] expanding solenoids, we show that the topological entropy and fractal dimensions are closely related. For a locally [Formula: see text] expanding solenoid, we prove that its topological entropy is lower estimated by the Hausdorff dimension of X multiplied by the logarithm of [Formula: see text].
format Online
Article
Text
id pubmed-7516996
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75169962020-11-09 Hausdorff Dimension and Topological Entropies of a Solenoid Biś, Andrzej Namiecińska, Agnieszka Entropy (Basel) Article The purpose of this paper is to elucidate the interrelations between three essentially different concepts: solenoids, topological entropy, and Hausdorff dimension. For this purpose, we describe the dynamics of a solenoid by topological entropy-like quantities and investigate the relations between them. For L-Lipschitz solenoids and locally [Formula: see text] expanding solenoids, we show that the topological entropy and fractal dimensions are closely related. For a locally [Formula: see text] expanding solenoid, we prove that its topological entropy is lower estimated by the Hausdorff dimension of X multiplied by the logarithm of [Formula: see text]. MDPI 2020-04-28 /pmc/articles/PMC7516996/ /pubmed/33286278 http://dx.doi.org/10.3390/e22050506 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Biś, Andrzej
Namiecińska, Agnieszka
Hausdorff Dimension and Topological Entropies of a Solenoid
title Hausdorff Dimension and Topological Entropies of a Solenoid
title_full Hausdorff Dimension and Topological Entropies of a Solenoid
title_fullStr Hausdorff Dimension and Topological Entropies of a Solenoid
title_full_unstemmed Hausdorff Dimension and Topological Entropies of a Solenoid
title_short Hausdorff Dimension and Topological Entropies of a Solenoid
title_sort hausdorff dimension and topological entropies of a solenoid
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516996/
https://www.ncbi.nlm.nih.gov/pubmed/33286278
http://dx.doi.org/10.3390/e22050506
work_keys_str_mv AT bisandrzej hausdorffdimensionandtopologicalentropiesofasolenoid
AT namiecinskaagnieszka hausdorffdimensionandtopologicalentropiesofasolenoid