Cargando…

Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models

In this paper, a gradient descent algorithm is proposed for the parameter estimation of multi-input and multi-output (MIMO) total non-linear dynamic models. Firstly, the MIMO total non-linear model is mapped to a non-completely connected feedforward neural network, that is, the parameters of the tot...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Longlong, Ma, Di, Azar, Ahmad Taher, Zhu, Quanmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517001/
https://www.ncbi.nlm.nih.gov/pubmed/33286282
http://dx.doi.org/10.3390/e22050510
_version_ 1783587128344576000
author Liu, Longlong
Ma, Di
Azar, Ahmad Taher
Zhu, Quanmin
author_facet Liu, Longlong
Ma, Di
Azar, Ahmad Taher
Zhu, Quanmin
author_sort Liu, Longlong
collection PubMed
description In this paper, a gradient descent algorithm is proposed for the parameter estimation of multi-input and multi-output (MIMO) total non-linear dynamic models. Firstly, the MIMO total non-linear model is mapped to a non-completely connected feedforward neural network, that is, the parameters of the total non-linear model are mapped to the connection weights of the neural network. Then, based on the minimization of network error, a weight-updating algorithm, that is, an estimation algorithm of model parameters, is proposed with the convergence conditions of a non-completely connected feedforward network. In further determining the variables of the model set, a method of model structure detection is proposed for selecting a group of important items from the whole variable candidate set. In order to verify the usefulness of the parameter identification process, we provide a virtual bench test example for the numerical analysis and user-friendly instructions for potential applications.
format Online
Article
Text
id pubmed-7517001
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75170012020-11-09 Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models Liu, Longlong Ma, Di Azar, Ahmad Taher Zhu, Quanmin Entropy (Basel) Article In this paper, a gradient descent algorithm is proposed for the parameter estimation of multi-input and multi-output (MIMO) total non-linear dynamic models. Firstly, the MIMO total non-linear model is mapped to a non-completely connected feedforward neural network, that is, the parameters of the total non-linear model are mapped to the connection weights of the neural network. Then, based on the minimization of network error, a weight-updating algorithm, that is, an estimation algorithm of model parameters, is proposed with the convergence conditions of a non-completely connected feedforward network. In further determining the variables of the model set, a method of model structure detection is proposed for selecting a group of important items from the whole variable candidate set. In order to verify the usefulness of the parameter identification process, we provide a virtual bench test example for the numerical analysis and user-friendly instructions for potential applications. MDPI 2020-04-30 /pmc/articles/PMC7517001/ /pubmed/33286282 http://dx.doi.org/10.3390/e22050510 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Longlong
Ma, Di
Azar, Ahmad Taher
Zhu, Quanmin
Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models
title Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models
title_full Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models
title_fullStr Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models
title_full_unstemmed Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models
title_short Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models
title_sort neural computing enhanced parameter estimation for multi-input and multi-output total non-linear dynamic models
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517001/
https://www.ncbi.nlm.nih.gov/pubmed/33286282
http://dx.doi.org/10.3390/e22050510
work_keys_str_mv AT liulonglong neuralcomputingenhancedparameterestimationformultiinputandmultioutputtotalnonlineardynamicmodels
AT madi neuralcomputingenhancedparameterestimationformultiinputandmultioutputtotalnonlineardynamicmodels
AT azarahmadtaher neuralcomputingenhancedparameterestimationformultiinputandmultioutputtotalnonlineardynamicmodels
AT zhuquanmin neuralcomputingenhancedparameterestimationformultiinputandmultioutputtotalnonlineardynamicmodels