Cargando…
A Cross Entropy Based Deep Neural Network Model for Road Extraction from Satellite Images
This paper proposes a deep convolutional neural network model with encoder-decoder architecture to extract road network from satellite images. We employ ResNet-18 and Atrous Spatial Pyramid Pooling technique to trade off between the extraction precision and running time. A modified cross entropy los...
Autores principales: | Shan, Bowei, Fang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517028/ https://www.ncbi.nlm.nih.gov/pubmed/33286307 http://dx.doi.org/10.3390/e22050535 |
Ejemplares similares
-
Maximum entropy methods for extracting the learned features of deep neural networks
por: Finnegan, Alex, et al.
Publicado: (2017) -
Feature and Label Association Based on Granulation Entropy for Deep Neural Networks
por: Bello, Marilyn, et al.
Publicado: (2020) -
Deep Convolutional Neural Network for Mapping Smallholder Agriculture Using High Spatial Resolution Satellite Image
por: Xie, Bin, et al.
Publicado: (2019) -
Satellite cloud image segmentation based on lightweight convolutional neural network
por: Li, Xi, et al.
Publicado: (2023) -
Road Extraction from Unmanned Aerial Vehicle Remote Sensing Images Based on Improved Neural Networks
por: Li, Yuxia, et al.
Publicado: (2019)