Cargando…
Prediction and Variable Selection in High-Dimensional Misspecified Binary Classification
In this paper, we consider prediction and variable selection in the misspecified binary classification models under the high-dimensional scenario. We focus on two approaches to classification, which are computationally efficient, but lead to model misspecification. The first one is to apply penalize...
Autores principales: | Furmańczyk, Konrad, Rejchel, Wojciech |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517038/ https://www.ncbi.nlm.nih.gov/pubmed/33286314 http://dx.doi.org/10.3390/e22050543 |
Ejemplares similares
-
Selection Consistency of Lasso-Based Procedures for Misspecified High-Dimensional Binary Model and Random Regressors
por: Kubkowski, Mariusz, et al.
Publicado: (2020) -
Statistical finite elements for misspecified models
por: Duffin, Connor, et al.
Publicado: (2021) -
Avoiding inferior clusterings with misspecified Gaussian mixture models
por: Kasa, Siva Rajesh, et al.
Publicado: (2023) -
Examining DIF in the Context of CDMs When the Q-Matrix Is Misspecified
por: Svetina, Dubravka, et al.
Publicado: (2018) -
The Perils of Misspecified Priors and Optional Stopping in Multi-Armed Bandits
por: Loecher, Markus
Publicado: (2021)