Cargando…
Renormalization Analysis of Topic Models
In practice, to build a machine learning model of big data, one needs to tune model parameters. The process of parameter tuning involves extremely time-consuming and computationally expensive grid search. However, the theory of statistical physics provides techniques allowing us to optimize this pro...
Autores principales: | Koltcov, Sergei, Ignatenko, Vera |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517079/ https://www.ncbi.nlm.nih.gov/pubmed/33286328 http://dx.doi.org/10.3390/e22050556 |
Ejemplares similares
-
Estimating Topic Modeling Performance with Sharma–Mittal Entropy
por: Koltcov, Sergei, et al.
Publicado: (2019) -
Analysis and tuning of hierarchical topic models based on Renyi entropy approach
por: Koltcov, Sergei, et al.
Publicado: (2021) -
Analyzing the Influence of Hyper-parameters and Regularizers of Topic Modeling in Terms of Renyi Entropy
por: Koltcov, Sergei, et al.
Publicado: (2020) -
International Conference Renormalization Group and Related Topics
Publicado: (2008) -
Renormalization: an introduction to renormalization, the renormalization group, and the operator-product expansion
por: Collins, John C
Publicado: (1984)