Cargando…
Mutual Information Based Learning Rate Decay for Stochastic Gradient Descent Training of Deep Neural Networks
This paper demonstrates a novel approach to training deep neural networks using a Mutual Information (MI)-driven, decaying Learning Rate (LR), Stochastic Gradient Descent (SGD) algorithm. MI between the output of the neural network and true outcomes is used to adaptively set the LR for the network,...
Autor principal: | Vasudevan, Shrihari |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517082/ https://www.ncbi.nlm.nih.gov/pubmed/33286332 http://dx.doi.org/10.3390/e22050560 |
Ejemplares similares
-
Stochastic gradient descent optimisation for convolutional neural network for medical image segmentation
por: Nagendram, Sanam, et al.
Publicado: (2023) -
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher–student setup
por: Goldt, Sebastian, et al.
Publicado: (2020) -
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023) -
On Scalable Deep Learning and Parallelizing Gradient Descent
por: Hermans, Joeri
Publicado: (2017) -
Complexity control by gradient descent in deep networks
por: Poggio, Tomaso, et al.
Publicado: (2020)