Cargando…
Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image
The object of this study was to demonstrate the ability of machine learning (ML) methods for the segmentation and classification of diabetic retinopathy (DR). Two-dimensional (2D) retinal fundus (RF) images were used. The datasets of DR—that is, the mild, moderate, non-proliferative, proliferative,...
Autores principales: | Ali, Aqib, Qadri, Salman, Khan Mashwani, Wali, Kumam, Wiyada, Kumam, Poom, Naeem, Samreen, Goktas, Atila, Jamal, Farrukh, Chesneau, Christophe, Anam, Sania, Sulaiman, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517087/ https://www.ncbi.nlm.nih.gov/pubmed/33286339 http://dx.doi.org/10.3390/e22050567 |
Ejemplares similares
-
Non-linear convective flow of the thin film nanofluid over an inclined stretching surface
por: Saeed, Anwar, et al.
Publicado: (2021) -
Analysis of newly developed fractal-fractional derivative with power law kernel for MHD couple stress fluid in channel embedded in a porous medium
por: Arif, Muhammad, et al.
Publicado: (2021) -
Analysis of Caputo fractional-order model for COVID-19 with lockdown
por: Ahmed, Idris, et al.
Publicado: (2020) -
Darcy–Forchheimer couple stress hybrid nanofluids flow with variable fluid properties
por: Saeed, Anwar, et al.
Publicado: (2021) -
Blood based hybrid nanofluid flow together with electromagnetic field and couple stresses
por: Saeed, Anwar, et al.
Publicado: (2021)