Cargando…
Estimation of Autoregressive Parameters from Noisy Observations Using Iterated Covariance Updates
Estimating the parameters of the autoregressive (AR) random process is a problem that has been well-studied. In many applications, only noisy measurements of AR process are available. The effect of the additive noise is that the system can be modeled as an AR model with colored noise, even when the...
Autores principales: | Moon, Todd K., Gunther, Jacob H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517090/ https://www.ncbi.nlm.nih.gov/pubmed/33286345 http://dx.doi.org/10.3390/e22050572 |
Ejemplares similares
-
Estimation of temporal covariances in pathogen dynamics using Bayesian multivariate autoregressive models
por: Mair, Colette, et al.
Publicado: (2019) -
Non-Iterative Multiscale Estimation for Spatial Autoregressive Geographically Weighted Regression Models
por: Gao, Shi-Jie, et al.
Publicado: (2023) -
A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates
por: Jacob, Benjamin G, et al.
Publicado: (2009) -
Smoothing of, and Parameter Estimation from, Noisy Biophysical
Recordings
por: Huys, Quentin J. M., et al.
Publicado: (2009) -
Joint Stochastic Spline and Autoregressive Identification Aiming Order Reduction Based on Noisy Sensor Data
por: Stefanoiu, Dan, et al.
Publicado: (2020)