Cargando…
Wearable Inertial Sensors for Daily Activity Analysis Based on Adam Optimization and the Maximum Entropy Markov Model
Advancements in wearable sensors technologies provide prominent effects in the daily life activities of humans. These wearable sensors are gaining more awareness in healthcare for the elderly to ensure their independent living and to improve their comfort. In this paper, we present a human activity...
Autores principales: | Tahir, Sheikh Badar ud din, Jalal, Ahmad, Kim, Kibum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517099/ https://www.ncbi.nlm.nih.gov/pubmed/33286351 http://dx.doi.org/10.3390/e22050579 |
Ejemplares similares
-
Automatic Recognition of Human Interaction via Hybrid Descriptors and Maximum Entropy Markov Model Using Depth Sensors
por: Jalal, Ahmad, et al.
Publicado: (2020) -
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems
por: Jalal, Ahmad, et al.
Publicado: (2020) -
Ambulatory Human Gait Phase Detection Using Wearable Inertial Sensors and Hidden Markov Model
por: Liu, Long, et al.
Publicado: (2021) -
Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains
por: Cofré, Rodrigo, et al.
Publicado: (2018) -
Recognition of Daily Gestures with Wearable Inertial Rings and Bracelets
por: Moschetti, Alessandra, et al.
Publicado: (2016)