Cargando…
Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network
The symmetric positive definite (SPD) matrix has attracted much attention in classification problems because of its remarkable performance, which is due to the underlying structure of the Riemannian manifold with non-negative curvature as well as the use of non-linear geometric metrics, which have a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517104/ https://www.ncbi.nlm.nih.gov/pubmed/33286357 http://dx.doi.org/10.3390/e22050585 |
_version_ | 1783587153335287808 |
---|---|
author | Wang, Jiangyi Hua, Xiaoqiang Zeng, Xinwu |
author_facet | Wang, Jiangyi Hua, Xiaoqiang Zeng, Xinwu |
author_sort | Wang, Jiangyi |
collection | PubMed |
description | The symmetric positive definite (SPD) matrix has attracted much attention in classification problems because of its remarkable performance, which is due to the underlying structure of the Riemannian manifold with non-negative curvature as well as the use of non-linear geometric metrics, which have a stronger ability to distinguish SPD matrices and reduce information loss compared to the Euclidean metric. In this paper, we propose a spectral-based SPD matrix signal detection method with deep learning that uses time-frequency spectra to construct SPD matrices and then exploits a deep SPD matrix learning network to detect the target signal. Using this approach, the signal detection problem is transformed into a binary classification problem on a manifold to judge whether the input sample has target signal or not. Two matrix models are applied, namely, an SPD matrix based on spectral covariance and an SPD matrix based on spectral transformation. A simulated-signal dataset and a semi-physical simulated-signal dataset are used to demonstrate that the spectral-based SPD matrix signal detection method with deep learning has a gain of 1.7–3.3 dB under appropriate conditions. The results show that our proposed method achieves better detection performances than its state-of-the-art spectral counterparts that use convolutional neural networks. |
format | Online Article Text |
id | pubmed-7517104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75171042020-11-09 Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network Wang, Jiangyi Hua, Xiaoqiang Zeng, Xinwu Entropy (Basel) Article The symmetric positive definite (SPD) matrix has attracted much attention in classification problems because of its remarkable performance, which is due to the underlying structure of the Riemannian manifold with non-negative curvature as well as the use of non-linear geometric metrics, which have a stronger ability to distinguish SPD matrices and reduce information loss compared to the Euclidean metric. In this paper, we propose a spectral-based SPD matrix signal detection method with deep learning that uses time-frequency spectra to construct SPD matrices and then exploits a deep SPD matrix learning network to detect the target signal. Using this approach, the signal detection problem is transformed into a binary classification problem on a manifold to judge whether the input sample has target signal or not. Two matrix models are applied, namely, an SPD matrix based on spectral covariance and an SPD matrix based on spectral transformation. A simulated-signal dataset and a semi-physical simulated-signal dataset are used to demonstrate that the spectral-based SPD matrix signal detection method with deep learning has a gain of 1.7–3.3 dB under appropriate conditions. The results show that our proposed method achieves better detection performances than its state-of-the-art spectral counterparts that use convolutional neural networks. MDPI 2020-05-22 /pmc/articles/PMC7517104/ /pubmed/33286357 http://dx.doi.org/10.3390/e22050585 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Jiangyi Hua, Xiaoqiang Zeng, Xinwu Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network |
title | Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network |
title_full | Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network |
title_fullStr | Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network |
title_full_unstemmed | Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network |
title_short | Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network |
title_sort | spectral-based spd matrix representation for signal detection using a deep neutral network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517104/ https://www.ncbi.nlm.nih.gov/pubmed/33286357 http://dx.doi.org/10.3390/e22050585 |
work_keys_str_mv | AT wangjiangyi spectralbasedspdmatrixrepresentationforsignaldetectionusingadeepneutralnetwork AT huaxiaoqiang spectralbasedspdmatrixrepresentationforsignaldetectionusingadeepneutralnetwork AT zengxinwu spectralbasedspdmatrixrepresentationforsignaldetectionusingadeepneutralnetwork |