Cargando…
Event-Triggered Adaptive Fault Tolerant Control for a Class of Uncertain Nonlinear Systems
This paper considers an adaptive fault-tolerant control problem for a class of uncertain strict feedback nonlinear systems, in which the actuator has an unknown drift fault and the loss of effectiveness fault. Based on the event-triggered theory, the adaptive backstepping technique, and Lyapunov the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517132/ https://www.ncbi.nlm.nih.gov/pubmed/33286370 http://dx.doi.org/10.3390/e22060598 |
Sumario: | This paper considers an adaptive fault-tolerant control problem for a class of uncertain strict feedback nonlinear systems, in which the actuator has an unknown drift fault and the loss of effectiveness fault. Based on the event-triggered theory, the adaptive backstepping technique, and Lyapunov theory, a novel fault-tolerant control strategy is presented. It is shown that an appropriate comprise between the control performance and the sensor data real-time transmission consumption is made, and the fault-tolerant tracking control problem of the strict feedback nonlinear system with uncertain and unknown control direction is solved. The adaptive backstepping method is introduced to compensate the actuator faults. Moreover, a new adjustable event-triggered rule is designed to determine the sampling state instants. The overall control strategy guarantees that the output signal tracks the reference signal, and all the signals of the closed-loop systems are convergent. Finally, the fan speed control system is constructed to demonstrate the validity of the proposed strategy and the application of the general systems. |
---|