Cargando…
From the Jordan Product to Riemannian Geometries on Classical and Quantum States
The Jordan product on the self-adjoint part of a finite-dimensional [Formula: see text]-algebra [Formula: see text] is shown to give rise to Riemannian metric tensors on suitable manifolds of states on [Formula: see text] , and the covariant derivative, the geodesics, the Riemann tensor, and the sec...
Autores principales: | Ciaglia, Florio M., Jost, Jürgen, Schwachhöfer, Lorenz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517174/ https://www.ncbi.nlm.nih.gov/pubmed/33286409 http://dx.doi.org/10.3390/e22060637 |
Ejemplares similares
-
Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras
por: Ciaglia, Florio M., et al.
Publicado: (2020) -
Riemannian geometry and geometric analysis
por: Jost, Jürgen
Publicado: (2017) -
Riemannian geometry and geometric analysis
por: Jost, Jürgen
Publicado: (1998) -
Riemannian Geometry and Geometric Analysis
por: Jost, Jürgen
Publicado: (2011) -
Riemannian geometry and geometric analysis
por: Jost, Jürgen
Publicado: (2005)