Cargando…
Robust Bayesian Regression with Synthetic Posterior Distributions
Although linear regression models are fundamental tools in statistical science, the estimation results can be sensitive to outliers. While several robust methods have been proposed in frequentist frameworks, statistical inference is not necessarily straightforward. We here propose a Bayesian approac...
Autores principales: | Hashimoto, Shintaro, Sugasawa, Shonosuke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517196/ https://www.ncbi.nlm.nih.gov/pubmed/33286432 http://dx.doi.org/10.3390/e22060661 |
Ejemplares similares
-
On Selection Criteria for the Tuning Parameter in Robust Divergence
por: Sugasawa, Shonosuke, et al.
Publicado: (2021) -
On Default Priors for Robust Bayesian Estimation with Divergences
por: Nakagawa, Tomoyuki, et al.
Publicado: (2020) -
A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization
por: Chen, Ruidi, et al.
Publicado: (2018) -
Bayesian Gaussian distributional regression models for more efficient norm estimation
por: Voncken, Lieke, et al.
Publicado: (2020) -
Modelling chronic malnutrition in Zambia: A Bayesian distributional regression approach
por: Moonga, Given, et al.
Publicado: (2021)