Cargando…
Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines
Wind turbines work in strong background noise, and multiple faults often occur where features are mixed together and are easily misjudged. To extract composite fault of rolling bearings from wind turbines, a new hybrid approach was proposed based on multi-point optimal minimum entropy deconvolution...
Autores principales: | Xiang, Ling, Su, Hao, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517215/ https://www.ncbi.nlm.nih.gov/pubmed/33286455 http://dx.doi.org/10.3390/e22060682 |
Ejemplares similares
-
Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data
por: Encalada-Dávila, Ángel, et al.
Publicado: (2021) -
A Probabilistic Bayesian Parallel Deep Learning Framework for Wind Turbine Bearing Fault Diagnosis
por: Meng, Liang, et al.
Publicado: (2022) -
Structural control and fault detection of wind turbine systems
por: Karimi, Hamid Reza
Publicado: (2018) -
An SVM-Based Solution for Fault Detection in Wind Turbines
por: Santos, Pedro, et al.
Publicado: (2015) -
Blind Fault Extraction of Rolling-Bearing Compound Fault Based on Improved Morphological Filtering and Sparse Component Analysis
por: Xie, Wensong, et al.
Publicado: (2022)