Cargando…
Automatic Detection of Depression in Speech Using Ensemble Convolutional Neural Networks
This paper proposes a speech-based method for automatic depression classification. The system is based on ensemble learning for Convolutional Neural Networks (CNNs) and is evaluated using the data and the experimental protocol provided in the Depression Classification Sub-Challenge (DCC) at the 2016...
Autores principales: | Vázquez-Romero, Adrián, Gallardo-Antolín, Ascensión |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517226/ https://www.ncbi.nlm.nih.gov/pubmed/33286460 http://dx.doi.org/10.3390/e22060688 |
Ejemplares similares
-
Automatic Depression Detection Using Smartphone-Based Text-Dependent Speech Signals: Deep Convolutional Neural Network Approach
por: Kim, Ah Young, et al.
Publicado: (2023) -
Automatic detection of contouring errors using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2019) -
Automatic ovarian tumors recognition system based on ensemble convolutional neural network with ultrasound imaging
por: Hsu, Shih-Tien, et al.
Publicado: (2022) -
Detecting positional vertigo using an ensemble of 2D convolutional neural networks()
por: Newman, Jacob L., et al.
Publicado: (2021) -
Automatic Identification of Depression Using Facial Images with Deep Convolutional Neural Network
por: Kong, Xinru, et al.
Publicado: (2022)