Cargando…
Optimal Encoding in Stochastic Latent-Variable Models
In this work we explore encoding strategies learned by statistical models of sensory coding in noisy spiking networks. Early stages of sensory communication in neural systems can be viewed as encoding channels in the information-theoretic sense. However, neural populations face constraints not commo...
Autores principales: | Rule, Michael E., Sorbaro, Martino, Hennig, Matthias H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517251/ https://www.ncbi.nlm.nih.gov/pubmed/33286485 http://dx.doi.org/10.3390/e22070714 |
Ejemplares similares
-
Neural field models for latent state inference: Application to large-scale neuronal recordings
por: Rule, Michael E., et al.
Publicado: (2019) -
Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications
por: Sorbaro, Martino, et al.
Publicado: (2020) -
The information theory of developmental pruning: Optimizing global network architectures using local synaptic rules
por: Scholl, Carolin, et al.
Publicado: (2021) -
Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework
por: Zhang, Siliang, et al.
Publicado: (2022) -
Optimal Bayesian estimators for latent variable cluster models
por: Rastelli, Riccardo, et al.
Publicado: (2017)