Cargando…

Emodin protects against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway

Objective: Our aim was to investigate the effect of emodin on intestinal and lung injury induced by acute intestinal injury in rats and explore potential molecular mechanisms. Methods: Healthy male Sprague–Dawley (SD) rats were randomly divided into five groups (n=10, each group): normal group; sali...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Jingli, Li, Guoping, Jin, Xiaosheng, Ma, Chunfang, Cai, Wanru, Jiang, Na, Zheng, Jisheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517261/
https://www.ncbi.nlm.nih.gov/pubmed/32915230
http://dx.doi.org/10.1042/BSR20201605
Descripción
Sumario:Objective: Our aim was to investigate the effect of emodin on intestinal and lung injury induced by acute intestinal injury in rats and explore potential molecular mechanisms. Methods: Healthy male Sprague–Dawley (SD) rats were randomly divided into five groups (n=10, each group): normal group; saline group; acute intestinal injury model group; model + emodin group; model+NF-κB inhibitor pynolidine dithiocarbamate (PDTC) group. Histopathological changes in intestine/lung tissues were observed by Hematoxylin and Eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) staining. Serum IKBα, p-IKBα, surfactant protein-A (SP-A) and toll-like receptor 4 (TLR4) levels were examined using enzyme-linked immunosorbent assay (ELISA). RT-qPCR was performed to detect the mRNA expression levels of IKBα, SP-A and TLR4 in intestine/lung tissues. Furthermore, the protein expression levels of IKBα, p-IKBα, SP-A and TLR4 were detected by Western blot. Results: The pathological injury of intestinal/lung tissues was remarkedly ameliorated in models treated with emodin and PDTC. Furthermore, the intestinal/lung injury scores were significantly decreased after emodin or PDTC treatment. TUNEL results showed that both emodin and PDTC treatment distinctly attenuated the apoptosis of intestine/lung tissues induced by acute intestinal injury. At the mRNA level, emodin significantly increased the expression levels of SP-A and decreased the expression levels of IKBα and TLR4 in intestine/lung tissues. According to ELISA and Western blot, emodin remarkedly inhibited the expression of p-IKBα protein and elevated the expression of SP-A and TLR4 in serum and intestine/lung tissues induced by acute intestinal injury. Conclusion: Our findings suggested that emodin could protect against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway.