Cargando…
Convergence Behavior of DNNs with Mutual-Information-Based Regularization
Information theory concepts are leveraged with the goal of better understanding and improving Deep Neural Networks (DNNs). The information plane of neural networks describes the behavior during training of the mutual information at various depths between input/output and hidden-layer variables. Prev...
Autores principales: | Jónsson, Hlynur, Cherubini, Giovanni, Eleftheriou, Evangelos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517266/ https://www.ncbi.nlm.nih.gov/pubmed/33286499 http://dx.doi.org/10.3390/e22070727 |
Ejemplares similares
-
Decoding Physics Information in DNNs
por: Cheng, Taoli
Publicado: (2019) -
On the visual analytic intelligence of neural networks
por: Woźniak, Stanisław, et al.
Publicado: (2023) -
Fast Calorimeter Simulation in ATLAS with DNNs
por: Golling, Tobias, et al.
Publicado: (2020) -
Epi-DNNs: Epidemiological priors informed deep neural networks for modeling COVID-19 dynamics
por: Ning, Xiao, et al.
Publicado: (2023) -
Directly Matching an MMIC Amplifier Integrated with MIMO Antenna through DNNs for Future Networks
por: Kouhalvandi, Lida
Publicado: (2022)