Cargando…
Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological Networks
The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source...
Autores principales: | Antonacci, Yuri, Astolfi, Laura, Nollo, Giandomenico, Faes, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517272/ https://www.ncbi.nlm.nih.gov/pubmed/33286504 http://dx.doi.org/10.3390/e22070732 |
Ejemplares similares
-
Multivariate Correlation Measures Reveal Structure and Strength of Brain–Body Physiological Networks at Rest and During Mental Stress
por: Pernice, Riccardo, et al.
Publicado: (2021) -
Measuring Connectivity in Linear Multivariate Processes: Definitions, Interpretation, and Practical Analysis
por: Faes, Luca, et al.
Publicado: (2012) -
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
por: Antonacci, Yuri, et al.
Publicado: (2021) -
Information Domain Approach to the Investigation of Cardio-Vascular, Cardio-Pulmonary, and Vasculo-Pulmonary Causal Couplings
por: Faes, Luca, et al.
Publicado: (2011) -
Discovery of protein–DNA interactions by penalized multivariate regression
por: Zamdborg, Leonid, et al.
Publicado: (2009)