Cargando…
Non-Uniform Embedding Scheme and Low-Dimensional Approximation Methods for Causality Detection
Information causality measures have proven to be very effective in uncovering the connectivity patterns of multivariate systems. The non-uniform embedding (NUE) scheme has been developed to address the “curse of dimensionality”, since the estimation relies on high-dimensional conditional mutual info...
Autor principal: | Papana, Angeliki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517293/ https://www.ncbi.nlm.nih.gov/pubmed/33286517 http://dx.doi.org/10.3390/e22070745 |
Ejemplares similares
-
Low-dimensional approximation searching strategy for transfer entropy from non-uniform embedding
por: Zhang, Jian
Publicado: (2018) -
Detecting Causality in Multivariate Time Series via Non-Uniform Embedding
por: Jia, Ziyu, et al.
Publicado: (2019) -
Connectivity Analysis for Multivariate Time Series: Correlation vs. Causality
por: Papana, Angeliki
Publicado: (2021) -
Assessment of resampling methods for causality testing: A note on the US inflation behavior
por: Papana, Angeliki, et al.
Publicado: (2017) -
Exploitation of Information as a Trading Characteristic: A Causality-Based Analysis of Simulated and Financial Data
por: Kyrtsou, Catherine, et al.
Publicado: (2020)