Cargando…
A New Multi-Attribute Emergency Decision-Making Algorithm Based on Intuitionistic Fuzzy Cross-Entropy and Comprehensive Grey Correlation Analysis
Intuitionistic fuzzy distance measurement is an effective method to study multi-attribute emergency decision-making (MAEDM) problems. Unfortunately, the traditional intuitionistic fuzzy distance measurement method cannot accurately reflect the difference between membership and non-membership data, w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517319/ https://www.ncbi.nlm.nih.gov/pubmed/33286540 http://dx.doi.org/10.3390/e22070768 |
Sumario: | Intuitionistic fuzzy distance measurement is an effective method to study multi-attribute emergency decision-making (MAEDM) problems. Unfortunately, the traditional intuitionistic fuzzy distance measurement method cannot accurately reflect the difference between membership and non-membership data, where it is easy to cause information confusion. Therefore, from the intuitionistic fuzzy number (IFN), this paper constructs a decision-making model based on intuitionistic fuzzy cross-entropy and a comprehensive grey correlation analysis algorithm. For the MAEDM problems of completely unknown and partially known attribute weights, this method establishes a grey correlation analysis algorithm based on the objective evaluation value and subjective preference value of decision makers (DMs), which makes up for the shortcomings of traditional model information loss and greatly improves the accuracy of MAEDM. Finally, taking the Wenchuan Earthquake on May 12th 2008 as a case study, this paper constructs and solves the ranking problem of shelters. Through the sensitivity comparison analysis, when the grey resolution coefficient increases from 0.4 to 1.0, the ranking result of building shelters remains stable. Compared to the traditional intuitionistic fuzzy distance, this method is shown to be more reliable. |
---|